Von Neumann type trace inequalities for Schatten-class operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Bounds for Eigenvalues of Schatten-von Neumann Operators

Let Sp be the Schatten-von Neumann ideal of compact operators equipped with the norm Np(·). For an A ∈ Sp (1 < p <∞), the inequality [ ∞ ∑ k=1 |Reλk(A)| ] 1 p + bp [ ∞ ∑ k=1 | Imλk(A)| ] 1 p ≥ Np(AR)− bpNp(AI) (bp = const. > 0) is derived, where λj(A) (j = 1, 2, . . . ) are the eigenvalues of A, AI = (A − A∗)/2i and AR = (A + A∗)/2. The suggested approach is based on some relations between the ...

متن کامل

An Interesting Class of Operators with Unusual Schatten–von Neumann Behavior

We consider the class of integral operators Qφ on L (R+) of the form (Qφf)(x) = ∫ ∞ 0 φ(max{x, y})f(y)dy. We discuss necessary and sufficient conditions on φ to insure that Qφ is bounded, compact, or in the Schatten–von Neumann class Sp, 1 < p < ∞. We also give necessary and sufficient conditions for Qφ to be a finite rank operator. However, there is a kind of cut-off at p = 1, and for membersh...

متن کامل

An Interesting Class of Operators with Unusual Schatten–von Neumann Behavior

We consider the class of integral operators Qφ on L (R+) of the form (Qφf)(x) = ∫ ∞ 0 φ(max{x, y})f(y)dy. We discuss necessary and sufficient conditions on φ to insure that Qφ is bounded, compact, or in the Schatten–von Neumann class Sp, 1 < p < ∞. We also give necessary and sufficient conditions for Qφ to be a finite rank operator. However, there is a kind of cut-off at p = 1, and for membersh...

متن کامل

Continuity and Schatten–von Neumann Properties for Pseudo–Differential Operators and Toeplitz operators on Modulation Spaces

Let M (ω) be the modulation space with parameters p, q and weight function ω. We prove that if p1 = p2, q1 = q2, ω1 = ω0ω and ω2 = ω0, and ∂ a/ω0 ∈ L ∞ for all α, then the Ψdo at(x,D) : M p1,q1 (ω1) → M22 (ω2) is continuous. If instead a ∈ M p,q (ω) for appropriate p, q and ω, then we prove that the map here above is continuous, and if in addition pj = qj = 2, then we prove that at(x,D) is a Sc...

متن کامل

Type Ii1 Von Neumann Representations for Hecke Operators on Maass Forms and Inequalities for Their Eigenvalues

We prove that classical Hecke operators on Maass forms are a special case of completely positive maps on II1 factors, associated to a pair of isomorphic subfactors. This representation induces several matrix inequalities on the eigenvalues of the Hecke operators Maass forms. These inequalities are the consequence of a “double” action of the Hecke algebra which can be seen only in the type II1 r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Operator Theory

سال: 2020

ISSN: 0379-4024,1841-7744

DOI: 10.7900/jot.2019jun03.2241